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Nonequilibrium thermodynamics in sheared hard-sphere materials
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We combine the shear-transformation-zone (STZ) theory of amorphous plasticity with Edwards’ statistical
theory of granular materials to describe shear flow in a disordered system of thermalized hard spheres. The
equations of motion for this system are developed within a statistical thermodynamic framework analogous
to that which has been used in the analysis of molecular glasses. For hard spheres, the system volume V

replaces the internal energy U as a function of entropy S in conventional statistical mechanics. In place
of the effective temperature, the compactivity X = ∂V/∂S characterizes the internal state of disorder. We derive
the STZ equations of motion for a granular material accordingly, and predict the strain rate as a function of the
ratio of the shear stress to the pressure for different values of a dimensionless, temperature-like variable near
a jamming transition. We use a simplified version of our theory to interpret numerical simulations by Haxton,
Schmiedeberg, and Liu, and in this way are able to obtain useful insights about internal rate factors and relations
between jamming and glass transitions.

DOI: 10.1103/PhysRevE.85.061308 PACS number(s): 45.70.−n, 64.70.qd, 83.50.−v, 47.57.Gc

I. INTRODUCTION

In this paper, we combine the basic elements of the shear-
transformation-zone (STZ) theory of amorphous molecular
plasticity [1,2] with Edwards’ statistical theory of granular
materials [3–7] to construct a theory of shear flow in a
noncrystalline system of thermalized hard spheres.

The STZ theory has been successful in accounting for
a range of glassy, nonequilibrium phenomena, such as the
formation of shear bands [8], stress-strain curves of metallic
glasses in constant strain-rate experiments [9], and frequency-
dependent viscoelastic response functions [10,11]. Most re-
cently, Langer proposed that the STZ’s play the role of dynamic
heterogeneities in producing both Stokes-Einstein violations
and the stretched-exponential relaxation [12].

The essence of the STZ theory of plasticity is the as-
sumption that irreversible molecular rearrangements occur
at isolated flow defects (i.e., STZ’s). In deforming systems,
the STZ’s are not fixed structural features. Rather, they are
activated fluctuations that appear and disappear in response
to thermal or mechanically generated noise. The plastic
strain rate in this theory is proportional to the STZ density,
which is determined by a Boltzmann-like factor of the form
exp (−eZ/θeff), where eZ is the STZ formation energy, and
θeff = ∂UC/∂SC is the effective temperature in energy units.
Here, UC is the configurational potential energy and SC is the
configurational entropy. θeff is a measure of the configurational
disorder.

Sheared, dense, granular materials exhibit features, such
as dynamic yield stresses and jamming transitions, that are
similar to those of amorphous molecular systems. However,
these systems differ fundamentally from each other because
the energies of interaction between ideally hard grains are
undefined. For a granular material composed of frictionless
hard spheres, there is no potential energy of interaction
between grains. Concepts such as the effective temperature θeff

and the formation energy eZ cannot be carried over directly
from theories of molecular plasticity. Nevertheless, granular
materials do carry entropy, and granular rearrangements under
shear must be governed by the second law of thermodynamics

just as molecular rearrangements are in an elastoplastic solid.
How, then, are we to formulate an STZ theory for granular
materials composed of perfectly hard grains?

Edwards and coworkers [3–7] have argued that the total
volume V occupied by a granular system plays the role of
the configurational energy UC in the statistical theory of
granular materials. In general, like UC , V is a function of the
configurational entropy SC plus other internal state variables
to be specified below. The compactivity,

X = ∂V

∂SC

(1.1)

is the analog of the effective temperature. Our main purpose
here is to extend this analogy to nonequilibrium situations.

This paper is structured as follows. We start in Sec. II by
writing out the first and second laws of thermodynamics for
a system of hard spheres in contact with a thermal reservoir
and driven by external forces. Then, in Secs. III through V,
we derive equations of motion for the STZ’s and for the
compactivity X. In Sec. VI, we use our theory to interpret
the results of molecular dynamics simulations of bidisperse
hard spheres by Haxton, Schmiedeberg, and Liu [13,14],
hereafter referred to as HSL. An especially important part of
the HSL results is Haxton’s use of a compressibility identity to
measure an effective temperature proportional to X [14], and
thereby provide information regarding internal rate factors and
relations between jamming and glass transitions. We conclude
in Sec. VII with remarks about the implications of these results.

II. FIRST AND SECOND LAWS OF THERMODYNAMICS

Consider a noncrystalline system of hard grains whose
kinetic temperature θ is fixed by contact with a thermal
reservoir. For simplicity, assume that this reservoir has a large
enough heat capacity that its temperature does not change
when energy flows between it and the granular subsystem.
Let UT denote the total energy of this system, including the
granular kinetic energies and the energy stored in the reservoir.
If the grains interact only via contact forces, they have no
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configurational potential energy and, therefore, no such energy
is included in UT .

Suppose that this system is driven in simple (not pure)
shear by a shear stress s and a pressure p. The first law of
thermodynamics for this system is

U̇T = V s γ̇ − p V̇

= V s γ̇ − pXṠC − p
∑

α

(
∂V

∂�α

)
SC

�̇α, (2.1)

where γ̇ is the shear rate, SC is the granular configurational
entropy introduced above in Eq. (1.1), and �α are internal
variables that specify the configurational state of the granular
subsystem.

Let ST denote the entropy of the reservoir plus the
(quantitatively negligible) entropy of the kinetic degrees of
freedom of the grains. Then

U̇T = θṠT , (2.2)

and

pXṠC = V sγ̇ − p
∑

α

(
∂V

∂�α

)
SC

�̇α − θṠT . (2.3)

The second law of thermodynamics requires that the total
entropy be a nondecreasing function of time

Ṡ = ṠC + ṠT � 0. (2.4)

Substituting Eq. (2.3) for ṠC into the second law above, and
using the fact that each individually variable term in the
resulting inequality must be nonnegative [15,16], we arrive
at the second-law constraints

W = V s γ̇ − p
∑

α

(
∂V

∂�α

)
SC

�̇α � 0, (2.5)

(pX − θ )ṠT � 0. (2.6)

The dissipation rate W , as defined in Refs. [15,16], is the
difference between the rate at which inelastic work is done on
the configurational subsystem and the rate at which energy is
stored in the internal degrees of freedom. The second constraint
implies that pX − θ and ṠT must carry the same sign if they
are nonzero, so that

θṠT = −K
(

1 − pX

θ

)
≡ Q, (2.7)

where K is a nonnegative thermal transport coefficient. It is
already clear from this analysis that p X plays the role of
a temperature. p X approaches θ in an equilibrating system
and a heat flux Q flows from the granular subsystem into the
reservoir when the two subsystems are not in thermodynamic
equilibrium with each other.

III. STZ EQUATIONS OF MOTION

The following discussion is almost, but not quite, the same
as that which has appeared in the STZ literature [2]. We repeat
it here because several of the differences are important.

As in the case of molecular systems, we assume that the
STZ’s are two-state flow defects. We further assume that only
a single species of STZ is statistically relevant at any given
temperature, pressure, or packing fraction. In other words,

for the steady-state behavior of interest here, we do not
invoke the explicit distribution over STZ transition rates that
was needed in theories of frequency-dependent viscoelasticity
[10,11] or stretched-exponential relaxation [12]. However,
some elements of those theories may be relevant here.

Following [1,2], we suppose for simplicity that STZ’s
can be classified as “plus” and “minus” according to their
orientations relative to the applied shear stress. We let N+ and
N− denote the number of STZs in each of the two orientations,
and let

� = N+ + N−
N

, m = N+ − N−
N+ + N−

(3.1)

denote the density and orientational bias of STZ’s, where N is
the number of grains.

Let vZ denote the excess volume per STZ. Then the total
volume V is

V = N�vZ + V1(S1)

= N�vZ + V1[SC − SZ(�,m)], (3.2)

where V1 and S1 are the volume and entropy of all configura-
tional degrees of freedom of the granular system not associated
with STZ’s, and SZ is the entropy associated with the STZ’s.
Then [16]

SZ(�,m) = NS0(�) + N�ψ(m), (3.3)

where

S0(�) = −� ln � + �, (3.4)

ψ(m) = ln 2 − 1
2 (1 + m) ln(1 + m)

− 1
2 (1 − m) ln(1 − m). (3.5)

The STZ equation of motion for N+ and N− is generally
written in the form

τṄ± = R(±s)N∓ − R(∓s)N± + 	̃
(

1
2N eq − N±

)
. (3.6)

The corresponding strain rate is

γ̇ = 2 v0

τV
[R(s)N− − R(−s)N+], (3.7)

where, because we are describing simple rather than pure shear,
we define the volume of the plastic core of an STZ to be 2 v0.

Each term in Eq. (3.6) needs some interpretation. On the
left-hand side, τ is a time scale that ordinarily has been chosen
to be consistent with the underlying microscale dynamics,
for example, a molecular vibration period. The analogous
choice for the hard-sphere system is the inertial time scale
τ = √

m/p a, where m is the average mass of a sphere,
and a3 is its average volume. This is the choice of time
scale made by HSL in reporting their data, thus we adopt
it here. For relatively small packing fractions φ = N a3/V ,
it can be shown that the inertial τ is proportional to the
average time between sphere-sphere collisions multiplied by
a dimensionless function of φ; thus the inertial time scale is
a natural analog of the molecular vibration period. At larger
values of φ, however, where the system becomes jammed, we
expect that most of the spheres are in close contact with each
other and that their rearrangement rates (just as in molecular

061308-2



NONEQUILIBRIUM THERMODYNAMICS IN SHEARED . . . PHYSICAL REVIEW E 85, 061308 (2012)

glasses) are determined by collective motions that are much
slower than τ−1.

On the right-hand side of Eq. (3.6), the first two terms
containing R(±s) are the rates (in units of τ−1) at which the
STZ’s are making forward and backward transitions. These
rates describe much of the basic physics of this class of
systems; they are discussed in more detail throughout this
paper. The second two terms are the rates of STZ creation
and annihilation. These are fluctuation-activated processes,
expressed here in the form of a detailed-balance relation in
which N eq is the steady-state total number of STZ’s.

	̃/τ is an attempt frequency consisting of additive thermal
and mechanical parts

	̃ = ρ + 	. (3.8)

The quantity ρ is best understood as a dimensionless, thermal
noise strength. Well above the jamming transition, where τ

is an accurate approximation for the elementary time scale, ρ

should be of the order of unity. As we approach the jamming
transition, either by decreasing θ or increasing p or φ, ρ

decreases rapidly, becoming unmeasurably small below a
transition point. When ρ = 0, the system is fully jammed in
the sense that configurational rearrangements can occur only
in response to sufficiently large driving forces. The rate ρ/τ ,
multiplied by an activation factor of the form exp (−const/θ ),
is our analog of the “α” relaxation rate τ−1

α . A first-principles
calculation of τα is the central unsolved problem of glass
physics. We do not attempt to solve it here, instead, we deduce
values of ρ from the HSL data.

In analogy to ρ/τ , the quantity 	/τ is the contribution
to the attempt frequency in Eq. (3.6) due to mechanically
generated noise. Here, we do have a well-defined prescription
for computing 	 from the rate of entropy generation, as shown
below in Eq. (4.1).

In terms of the intensive variables � and m, the STZ
equations of motion become

τ �̇ = 	̃(�eq − �), (3.9)

τ ṁ = 2 C(s)[T (s) − m] − 	̃m − τ
�̇

�
m, (3.10)

τ γ̇ = 2 ε0 � C(s)[T (s) − m], (3.11)

where ε0 = N v0/V and �eq = N eq/N . We also define

C(s) = 1
2 [R(s) + R(−s)] (3.12)

and

T (s) = R(s) − R(−s)

R(s) + R(−s)
. (3.13)

At this point in the development, the second law of
thermodynamics provides useful constraints on the ingredients
of the preceding equations. Substituting Eqs. (3.9), (3.10), and

(3.11) into Eq. (2.5) for the dissipation rate, we find

τ
W
N

= −	̃ p X �m
dψ

dm

+ 2� C(s) (T (s) − m)

(
v0s + pX

dψ

dm

)

−p	̃(�eq − �)

[
vZ + X

(
ln � − ψ(m) +m

dψ

dm

)]
.

(3.14)

The second-law constraint W � 0 implies that each of the
three terms in Eq. (3.14) must be nonnegative. The first
term automatically satisfies this requirement because, from
Eq. (3.5), we have

dψ

dm
= −1

2
ln

(
1 + m

1 − m

)
= − tanh−1(m) (3.15)

so that the product −m(dψ/dm) is automatically nonnegative.
An especially important result comes from the second term,

for which

(T (s) − m)

(
v0s + pX

dψ

dm

)
� 0. (3.16)

The two factors on the left-hand side must be monotonically
increasing functions of s that change sign at the same point for
arbitrary values of m. According to Eq. (3.15), this is possible
only if

T (s) = tanh

(
v0s

pX

)
. (3.17)

The nonnegativity constraint on the third term in Eq. (3.14)
can be written in the form

−∂F

∂�
(�eq − �) � 0, (3.18)

where F is a free energy given by

F (�,m) = p

[
vZ� + XS0(�) − X�

(
ψ(m) − m

dψ

dm

)]
.

(3.19)

�eq must be the value of � at which ∂F/∂� changes sign, so
that

�eq = exp

[
−vZ

X
+ ψ(m) − m

dψ

dm

]
≈ 2 exp

(
−vZ

X

)
.

(3.20)

Thus, the STZ density in this nonequilibrium situation is given
by a Boltzmann-like expression in which the compactivity
plays the role of the temperature.

IV. QUASISTATIONARY RELATIONS

At this point in our analysis, we specialize to quasistationary
or steady-state situations for which we can set �̇ = ṁ = 0,
implying specifically that � = �eq. We start by assuming
that Pechenik’s hypothesis [16,17] remains valid for a sheared
granular material, that is, that the mechanical noise strength
	 is proportional to the heat production per STZ. In steady
flow, all of the work done on the system is dissipated as heat;
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therefore the rate of energy dissipation per unit volume is
γ̇ s. To convert this rate into a noise strength with dimensions
of inverse time, we multiply by the volume per noise source
(i.e., the volume per STZ, v/�eq) and divide by an energy
conveniently written in the form ε0v s0. Here, v = V/N , and
s0 is a system-specific parameter with the dimensions of stress.
The resulting expression for 	 is

	 = s γ̇ τ

ε0s0�eq
= 2s

s0
C(s)(T (s) − m). (4.1)

With this result, the stationary version of Eq. (3.10) reads

2 C(s)(T (s) − m)

(
1 − ms

s0

)
− m ρ = 0, (4.2)

which is satisfied by m = meq(s), where

meq(s) = s0

2s

[
1 + s

s0
T (s) + ρ

2 C(s)

]

− s0

2s

√[
1 + s

s0
T (s) + ρ

2 C(s)

]2

− 4
s

s0
T (s). (4.3)

In particular, when ρ = 0, we find

meq =
{
T (s), if (s/s0) T (s) < 1,

s0/s, if (s/s0) T (s) � 1.
(4.4)

Thus an exchange of stability occurs in the same manner as
it did in molecular systems, with the low-temperature yield
stress being the solution of the equation

syT (sy) = sy tanh

(
v0sy

pX

)
= s0. (4.5)

If the temperature-like quantity p X is small in comparison
with v0s0, then sy ≈ s0.

Finally, the steady-state version of Eq. (3.11) for the strain
rate becomes

q ≡ τ γ̇ =4ε0e
−1/χC(s)

[
tanh

(
v0s

vZpχ

)
−meq(s)

]
. (4.6)

Here, we have introduced the inertial number q as a dimen-
sionless measure of the strain rate (e.g., see [18]). We also have
introduced the dimensionless compactivity χ = X/vZ .

V. KINEMATIC EQUATIONS FOR THE COMPACTIVITY

The dimensionless compactivity χ is the analog of the
effective temperature in molecular systems and, as such, is a
measure of the system’s state of structural disorder. Referring
to Eq. (2.7), we see that the natural definition of a thermal
temperature comparable to χ is

θ̃ ≡ θ

p vZ

, (5.1)

which is almost the same as the dimensionless temperature
θ̃H = θ/p a3 defined by HSL.

Below the jamming transition (i.e., at low temperatures or
high pressures where ρ = 0) and where long-lived structural
rearrangements can be induced only by externally driven
deformation, we expect there to be a direct relation between
the steady-state shear rate and the compactivity, say, χ = χ̂(q).

When the shear rate is much smaller than any relevant relax-
ation rate in the system, then dimensional analysis requires that
χ̂(q) be a q-independent constant, say χ̂0. However, when the
shear rate becomes comparable to internal relaxation rates (i.e.,
when the system is being “stirred” rapidly on its intrinsic time
scales), its disorder increases, and χ̂ (q) becomes an increasing
function of q. The simplest way to describe this situation is to
write χ̂ as a function of the ratio q/q0, where q0/τ is an internal
rate relevant to shear relaxation. One obvious possibility is that
q0 is proportional to R(0), which is a measure of the rate at
which STZ’s spontaneously undergo shear transitions between
their two states. This rate becomes slow in jammed systems,
but it generally remains nonzero even when ρ = 0.

In recent publications [19,20], it has been assumed that the
large-q relation between q/q0 and χ̂ has an Arrhenius form
q/q0 ∼ exp (−A/χ̂ ) for χ̂ � χ̂0. Both χ̂ and A are volumes
measured in units of vZ . If vZ is the only volume in the system
relevant to configurational rearrangements, then we expect that
A is of the order of unity. A relation of this form was discovered
in numerical simulations by Haxton and Liu [21].

To interpolate between the small-q and large-q behaviors
of χ̂ (q), it was proposed in Ref. [19] that χ̂ (q) be written
phenomenologically in the form of a Vogel-Fulcher-Tamann
(VFT) expression for a “viscosity” q−1 as a function of the
temperature χ̂

1

q
= 1

q0
exp

[
A

χ̂
+ αeff(χ̂)

]
, (5.2)

with

αeff(χ̂) =
(

χ̂1

χ̂ − χ̂0

)
exp

(
−b

χ̂ − χ̂0

χ̂A − χ̂0

)
. (5.3)

Thus, χ̂ → χ̂0 in the limit of small strain rates, and χ̂ → ∞ as
q → q0. The exponential cutoff in Eq. (5.3) is needed in order
that the VFT divergence at small χ̂ transforms smoothly to
the Arrhenius law at large χ̂ . Previous calculations have used
b = 3.

The equation of motion for χ itself is a statement of the first
law of thermodynamics; it describes entropy flow through the
slow, configurational degress of freedom into the fast thermal
motions of the grains. Near steady state, it has the form

χ̇ ∝ e−1/χ [	(χ̂(q) − χ ) + κρ(θ̃ − χ )]. (5.4)

The first term in the square brackets on the right-hand side is the
rate at which χ is driven toward χ̂ (q) by the mechanical noise
strength 	. The second term, proportional to ρ, is the rate at
which thermal fluctuations drive χ toward the scaled ambient
temperature θ̃ . κ is a dimensionless parameter of the order
of unity. The competition between the two terms in Eq. (5.4)
determines the value of χ ; it is close to χ̂ (q) for large 	, and
close to θ̃ when the system is driven slowly so that 	 is small.

There is one complication that must be dealt with at this
point. Equation (5.4), as written, implies that the steady-state
χ must lie in the interval between χ̂ (q) and θ̃ . If we assume
that χ̂(q) ≈ χ̂0 is a constant for small enough q, then a
system initially prepared with θ̃ > χ̂0 would be “cooled” to
χ < θ̃ when driven at a small strain rate. This behavior seems
implausible; so far as we know, it is not seen in simulations
(e.g., [14]) in which χ is measured directly. In Ref. [19], this
problem was corrected by setting χ̂0 = θ̃ when θ̃ exceeds χ0,
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and by rescaling χ̂1 and χ̂A accordingly. Specifically,

χ̂0 =
{
χ0, if θ̃ < χ0,

θ̃ , if θ̃ > χ0,
(5.5)

and

χ̂1 =
{
χ1, if θ̃ < χ0,

θ̃χ1/χ0, if θ̃ > χ0.
(5.6)

χ̂A =
{
χA, if θ̃ < χ0,

θ̃χA/χ0, if θ̃ > χ0.

This guarantees that χ̂(q) > θ̃ at all times.
In summary, we use Eq. (5.4) in the form

χ = 	χ̂ (q) + κ ρ θ̃

	 + κ ρ
, (5.7)

along with Eq. (5.2), to determine one relation between χ ,
q, and s. We then use Eq. (4.6) to compute both q and χ as
functions of s.

VI. ANALYSIS OF THE HSL SIMULATIONS

In their molecular dynamics simulations, HSL studied
mixtures of 4096 hard spheres, half each of size a and 1.4 a,
in contact with a thermal reservoir at fixed temperature θ = 1,
undergoing steady-state, simple shear driven by a shear stress
s and a pressure p. They reported the strain rates as functions
of s/p for a wide range of dimensionless temperatures

θ̃H = θ

p a3
= vZ

a3
θ̃ (6.1)

and packing fractions φ. In a separate paper [14], Haxton
reported measurements of the compressibility temperature
θcomp of this system using the relation

(N/V ) K θcomp = S(k → 0), (6.2)

where K is the isothermal compressibility and S(k) is the
structure factor as a function of the wave number k. He
argued that θcomp is the thermodynamic temperature of the
configurational degrees of freedom for this system, and
therefore ought to be the configurational effective temperature
in nonequilibrium situations where θcomp �= θ . Accordingly, in
analogy to Eq. (5.1), we assume that

χ = θcomp

p vZ

. (6.3)

A selection of 5 of the 13 HSL data sets are shown in
Figs. 1 to 3, along with our corresponding theoretical results.
Figures 1 and 2 are log-log plots, respectively, of q and the
dimensionless, viscosity-like ratio s/p q as functions of s/p,
for the values of θ̃H indicated in the figure caption. In Fig. 3
we show graphs of

χH ≡ θcomp

p a3
= vZ

a3
χ (6.4)

as functions of log10(q), again for five selected values of θ̃H .
The following analysis is closely parallel to that which has

been used for interpreting molecular dynamics simulations
of shear flow in a metallic glass [20]. In Ref. [20], the
system undergoes an ordinary thermal glass transition, but

3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4

3

2

1

0

log10 s p

lo
g 1
0
q

FIG. 1. (Color online) Log-log plots of simulated (data points)
and theoretical (solid curves) values of the dimensionless strain rates
q = τ γ̇ as functions of s/p for dimensionless temperatures θ̃H =
0.03 (blue circles), 0.05 (green squares), 0.08 (orange diamonds),
0.10 (magenta triangles), and 0.25 (red down triangles), shown in
that order from bottom to top.

there were no direct measurements of the thermodynamic
effective temperature with which to compare the theory. As
will be seen here, the measurements of χH shown in Fig. 3
provide crucially important information.

We find that we can fit the HSL data with a highly simplified
version of the STZ theory outlined above in Secs. III through V.
Our first major assumption is that the quantities ρ, s0, R(0) ≡
R0, and q0 are functions only of the scaled temperature θ̃

defined in Eq. (5.1).
Second, we assume that the symmetric function C(s)

defined in Eq. (3.12) is simply a constant [i.e., C(s) ≈ C(0) =
R0(θ̃)]. We further assume that the inertial rate τ−1 is a
sufficiently accurate estimate of the attempt frequency for
high-temperature activated processes that we can let R0(θ̃) →
1 and ρ(θ̃ ) → 1 in the limit of large θ̃ . We do not attempt
to predict the temperature dependence of either of these
fundamentally glassy rate factors at low temperatures, rather,
they are regarded here as measurable quantities.

3.0 2.5 2.0 1.5 1.0 0.5
1

0

1

2

3

log10 s p

lo
g 1
0
s
pq

FIG. 2. (Color online) Log-log plots of simulated (data points)
and theoretical (solid curves) values of the dimensionless viscosities
s/p q as functions of s/p, for dimensionless temperatures θ̃H = 0.03
(blue circles), 0.05 (green squares), 0.08 (orange diamonds), 0.10
(magenta triangles), and 0.25 (red down triangles), shown in that
order from top to bottom.
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FIG. 3. (Color online) Log-linear plots of simulated (data points)
and theoretical (solid curves) values of the effective temperature χH

as functions of the dimensionless strain rate q for dimensionless
temperatures θ̃H = 0.03 (blue circles), 0.05 (green squares), 0.08
(orange diamonds), 0.10 (magenta triangles), and 0.25 (red down
triangles).

Our third physically significant assumption is that the ratio
a3/vZ is a constant, independent of θ̃ . In other words, we
assume that the activation volume relevant to STZ creation is
some fixed multiple of the volume of a grain, independent of
whether the system is above or below a jamming transition,
independent of whether the transition rate R0(θ̃) is fast or
slow, and even independent of whether the STZ’s are compact
or extended objects under such different circumstances. Our
idea is that a3 is a measure of the free volume that must be
created in order for grains to exchange places with each other,
and that it does not matter whether that volume is created
quickly in a small, loose cluster of grains, or whether it is
created more slowly via rare fluctuations in a larger region.
For similar reasons, we assume that 2 v0, the volume of the
plastic core of an STZ, is also a fixed multiple of a3.

Finally, the dimensionless numbers ε0 and κ , which first
appeared in Eqs. (3.11) and (5.4), should both be of the order of
unity. In the absence of better information, we set ε0 = κ = 1.

The ratio vZ/a3 is especially important for our purposes
because it is the factor needed to convert from our temperature
variables θ̃ and χ to the HSL variables θ̃H and χH , as shown
in Eqs. (6.1) and (6.4). We can determine this ratio, as well
as the value of v0/vZ , by looking at the HSL data in the limit
of high temperatures and small stresses, where, as seen in
Figs. 1 and 2, the system exhibits simple linear viscosity. In
this limit, we know from Eq. (5.7) that χ ≈ θ̃ . We also know
by taking the small-stress limit of Eqs. (4.3) and (4.6), and
setting ρ = R0 = 1, that

s

p q
≈ 3 θ̃ vZ

4 v0
e1/θ̃ . (6.5)

Evaluating the left-hand side of this equation directly from the
HSL data at temperatures θ̃H = 0.25 and 0.30, we find that
vZ/a3 = θ̃H /θ̃ ∼= 0.53 and v0/a

3 ∼= 1.65. Thus, the activation
volume vZ is somewhat smaller than the average grain size,
and the plastic core of an STZ is somewhat bigger. Both are
plausible results, but we emphasize that both depend on our
assumption about the high-temperature limits of R0 and ρ.

The next step in our analysis is to look at low temperatures,
in the jammed region, where ρ = 0 and the data seem to
indicate well-defined yield stresses. In this limit, χ = χ̂ (q),
and Eqs. (4.3) and (4.6) become

q = 4 R0(θ̃) e−1/χ̂ (q)

(
1 − s0(θ̃)

s

)
. (6.6)

This equation allows us to evaluate the function s0(θ̃) directly
from the observed yield stresses. More interestingly, Eq. (5.2)
tells us that χ̂ is a universal function of the ratio q/q0(θ̃)
so long as the parameters A, χ̂0, and so on appearing there
and in Eq. (5.3) are independent of θ̃ , which we assume to
be true. Therefore, in this low-temperature regime, graphs of
χ (q) should collapse to a single curve when shifted along the
log10(q) axis by amounts log10(q0). The lower graphs shown
in Fig. 3 do behave in roughly this way. Thus, by fitting these
curves and using Eq. (6.6) to fit the low-temperature graphs in
Figs. 1 and 2, we can determine the temperature-independent
quantities A, χ0, χ1, and χA, defined in Eqs. (5.5) and (5.6); and
we can determine the low-temperature values of the functions
R0(θ̃) and q0(θ̃ ). Specifically, we find that A ∼= 1.09, χ0

∼=
0.12, χ1

∼= 0.038, and χA
∼= 0.47.

Having evaluated the temperature-independent parameters,
it is a straightforward exercise to complete this data analysis
using the full STZ equations. We need to fit the data in the
intermediate regions between fully jammed (ρ = 0) and fully
unjammed (ρ = 1) situations. We also need to look in more
detail at situations in which the driving forces s/p and the
resulting strain rates q become large. In the latter cases, we
know that the STZ theory must fail if the density of STZ’s
becomes too large and the system begins to behave more like a
liquid than a solid. The HSL data shown in Fig. 1 do show signs
of softening at the highest strain rates, and we make no attempt
to fit such behavior. (In Ref. [20], it was found that this behavior
at large stresses and low temperatures could be accounted for
in part by adding a Bagnold-like stress dependence to the STZ
transition rate.) On the other hand, the high-temperature data
indicate a nonlinear response at the larger values of q. This
nonlinearity is sensitive to s0(θ̃); thus we are able to evaluate
that function outside the jammed region.

The function ρ(θ̃ ), shown in Fig. 4 as a function of θ̃H ,
indicates that the hard-sphere system undergoes a jamming
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FIG. 4. (Color online) Thermal noise strength ρ as a function of
the dimensionless temperature θ̃H .
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FIG. 5. (Color online) Dimensionless STZ transition rate R0 (blue
circles) as a function of the dimensionless temperature θ̃H . The red
squares indicate independently determined values of q0/4 at the four
lowest values of θ̃H . Our rough estimates indicate that q0 levels off at
about 4.5 R0 above θ̃H ≈ 0.06, but is intrinsically not measurable at
appreciably higher temperatures.

transition in the region 0.05 < θ̃H < 0.10. Below those values
of θ̃H , the rate factor ρ becomes unmeasurably small, but we
have no way to determine whether or not it actually vanishes.
The internal transition rate R0(θ̃ ), shown as a function of
θ̃H in Fig. 5, undergoes a qualitatively similar transition
at smaller values of θ̃H , but remains nonzero down to the
lowest temperatures for which data are available. Consistent
with our discussion in Sec. V, the independently determined
low-temperature values of q0(θ̃) are roughly proportional to
4 R0(θ̃ ), as shown in Fig. 5. This factor 4 might be the
same factor that appears in Eq. (6.6), but we emphasize that
Eq. (5.2), in which q0 was defined operationally, is no more
than a phenomenological interpolation formula that should
not be interpreted too literally. At higher temperatures, where
χ ≈ θ̃ , q0(θ̃) plays no role in the theory and therefore, in
principle, cannot be evaluated. The stress scale s0 shown
in Fig. 6 decreases as a function of θ̃H within the jammed
region, and then becomes a constant at higher temperatures.
This is qualitatively the same behavior that was observed in
Refs. [19,20].
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FIG. 6. (Color online) Stress scale s0 in units of θ/a3 as a function
of the dimensionless temperature θ̃H .

As shown in Figs. 1 and 2, the resulting fits to the data for
strain rates as functions of stress are quite good everywhere
except at the largest values of q where, as noted earlier, we
expect the STZ theory to fail. The graphs of χH versus q

in Fig. 3 are harder to decipher, in part because the data are
noisier and, in part, because the small-q behaviors happen
to lie on top of one another. The two curves that are in the
jammed region where ρ = 0, with θ̃H = 0.03 and 0.05, are
slowly (logarithmically) approaching χH

∼= 0.53 χ0
∼= 0.064,

but they are still above that value at the smallest q’s. The next
two curves, for θ̃H = 0.08 and 0.10, already have reached
their asymptotic values at χH = θ̃H because 	 � ρ in Eq.
(5.7). As a result, the four lower curves in the figure appear to
be indistinguishable, but, in fact, are consistent with the theory
and reveal the importance of Haxton’s effective-temperature
data for understanding the competing time scales in this
system. The single, distinguishably high-temperature curve in
Fig. 3 is nearly flat at χH

∼= θ̃H
∼= 0.25. The fact that this curve

is crossed by the lowest-temperature curve with θ̃H
∼= 0.03

illustrates the sharp difference in the dynamics between the
jammed and unjammed regions.

VII. CONCLUDING REMARKS

The thermalized hard-sphere model studied numerically by
HSL is an ideal laboratory for studying glass-like behavior near
a jamming transition. It is sharply defined, with no ambiguities
about the role of interaction energies or about the origin
of the underlying time scale. As shown in Sec. II, it lends
itself easily to a nonequilibrium thermodynamic analysis that
systematically constrains the STZ equations of motion and
relates the Edwards compactivity X to the thermodynamic
effective temperature χ .

The HSL data are especially revealing because of Hax-
ton’s direct measurements of the effective temperature [14],
without which we could not have sorted out the temperature
dependencies of the different rate factors that appear in the
STZ theory. For example, there was no such information
about χ in the metallic glass simulations used by Egami and
Langer [20], and therefore no reason to expect that the strain-
rate parameter q0 defined in Sec. V was a strongly varying
function of temperature. As a result, it was concluded there
that the discrepancies between the theoretical and simulated
viscosities at small strain rates and temperatures near the glass
transition were due to a failure of the single-species STZ
theory. Here we see no such strong discrepancy, presumably
because we are taking more accurate account of the θ̃

dependence of the STZ transition rates in both R0(θ̃) and
q0(θ̃). This speculation, however, leads to yet more interesting
questions.

The most important of these questions, in our opinion,
pertain to the relations between the present results and
the postulate in Ref. [12] that the STZ’s are the dynamic
heterogeneities frequently invoked as explanations for a wide
range of glassy phenomena. In Refs. [10,11], Bouchbinder
and Langer showed that both basic statistical principles and
the results of frequency-dependent viscoelastic measurements
implied the existence of a broad spectrum of STZ transition
rates in equilibrated systems near their glass temperatures.
In Ref. [12], it was argued that the “slow” STZ’s near the
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bottom of this multispecies STZ spectrum are responsible for
anomalously large viscosities consistent with observed Stokes-
Einstein violations, and that the extended spectrum naturally
produces stretched-exponential relaxation in a variety of
experimental situations.

Here, we have used only a single-species STZ theory, but
we can interpret our values of R0(θ̃) as weighted averages over
the full spectrum in the multispecies theory. A difficulty with
this interpretation is that, according to the earlier statistical
analysis, the spectrum should shift to higher transition rates
as the system becomes noisier at larger driving stresses,
but, so far, we have assumed that R0(θ̃) is independent of
the stress. Nevertheless, the present results suggest that the
statistically effective STZ’s become markedly slower as θ̃

decreases through the jamming transition. Recently, Durian
and coworkers [22,23], in experiments using air-fluidized
grains, have found that their dynamical heterogeneities become
slower as the jamming transition is approached. They also
have found that these slower heterogeneities involve motions
of larger numbers of grains, a size effect that seems especially
intriguing. It was argued in Ref. [12] that the length of

the diffusion jumps associated with slow STZ’s must grow
with decreasing temperature to account for the apparently
normal, Fickian diffusion observed in those conditions. It
will be important to find out whether these are related
phenomena.
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